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ABSTRACT 
 
While thresholded statistical parametric maps can convey an accurate account for the location 
and spatial extent of an effect in functional neuroimaging studies, their use is somewhat 
limited for characterizing more complex experimental effects, such as interactions in a 
factorial design. The resulting necessity for plotting the underlying data has long been 
recognized. Statistical Parametric Mapping (SPM) is a widely used software package for 
analyzing functional neuroimaging data that offers a variety of options for visualizing data 
from first level analyses. However, nowadays, the thrust of the statistical inference lies at the 
second level thus allowing for population inference. Unfortunately, the options for visualizing 
data from second level analyses are quite sparse. rfxplot is a new toolbox designed to alleviate 
this problem by providing a comprehensive array of options for plotting data from within 
second level analyses in SPM. These include graphs of average effect sizes (across subjects), 
averaged fitted responses and event-related blood oxygen level-dependent (BOLD) time 
courses. All data are retrieved from the underlying first level analyses and voxel selection can 
be tailored to the maximum effect in each subject within a defined search volume. All plot 
configurations can be easily configured via a graphical user-interface as well as non-
interactively via a script. The large variety of plot options renders rfxplot suitable both for 
data exploration as well as producing high-quality figures for publications. 
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INTRODUCTION 
 
Statistical Parametric Mapping (SPM) is a widely used software package for analyzing 
neuroimaging data (http://www.fil.ion.ucl.ac.uk/spm) which utilizes a mass univariate 
approach for determining the parameter estimates of a general linear model (GLM) at each 
voxel in the brain (Kiebel and Holmes, 2007). These parameter estimates (or effect sizes) can 
be then subjected to a statistical test (contrast), which results in a statistical parametric map 
(Poline et al., 2007). These statistical maps can accurately display the location and spatial 
extent of an experimental effect. However, they fall short in conveying the “nature” of more 
complex effects like interactions in a factorial design (e.g., which condition in the interaction 
effect yields the largest activation). Thus, there exists an obvious necessity for plotting the 
underlying data, especially for the more complex multi-factorial designs that are widely 
employed in contemporary neuroimaging studies. 
 
The analysis of functional neuroimaging data in SPM proceeds in 2 stages: at the first level, 
subject-specific GLMs, which include regressors of all expected experimental effects and 
additional nuisance variables, are estimated and parameter estimates are derived. Building on 
the summary statistics approach (Penny and Holmes, 2007), these individual parameter 
estimates are then subjected to a second level analysis for a statistical test across the entire 
sample, thus allowing for population inference. Early functional neuroimaging in the 1990s 
combined all first level analyses into one single analysis, thus limiting the inference to merely 
the actual sample that was scanned. Nowadays, however, statistical inference is drawn from 
second level analyses that treat subjects as a random effect drawn from a larger population. 
Because individual subjects are regarded as a random effect, these second level analyses are 
commonly referred to as “random effects analyses”. 
 
SPM offers a variety of different options for plotting data from first level analyses (e.g., 
contrast estimate, fitted responses, event-related responses), but these options are quite sparse 
for second level analyses. rfxplot is a new toolbox designed to alleviate this problem. The 
toolbox provides an integrated and highly configurable approach for data visualization from 
within second level analyses. The name “rfxplot” was chosen because it conveys that the 
starting point of the toolbox is a second level random effects (RFX) analysis. rfxplot is 
distributed with an extensive user manual and can be downloaded at 
http://rfxplot.sourceforge.net. 
 
 
OVERVIEW OF THE TOOLBOX 
 
The toolbox fully integrates into SPM and uses its windows for entering configuration 
information and displaying data plots (Figure 1A). In addition, the data can be also displayed 
in other MATLAB figure windows making it easy to assemble several panels within a larger 
figure for a publication. User-specified options for plot configuration are entered via buttons, 
text entry fields, and drop-down menus in rfxplot input area (see Figure 1 for examples of the 
input interface). 
 
 
Plot Selection 
Three types of data are most commonly visualized in publications from neuroimaging studies: 
(1) average parameter estimates across subjects extracted from the individual first level 
analysis, which can be interpreted as the average effect size or activation of all trials that are 
modeled in the corresponding regressors, (2)  fitted responses, which convolve the parameter 
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estimate with the basis function to visualize the response shapes, and (3) event-related BOLD 
responses (also known as BOLD time courses or peri-stimulus time histograms, PSTHs) show 
the average evoked BOLD response of all trials belonging to an experimental condition 
analogous to an event-related potential (ERP) recorded with scalp EEG recordings. 
 
rfxplot currently offers all of the above mentioned data plots, which can be selected in a drop-
down menu (Figure 1B): (1) Plots of parameter estimates (effect sizes) are the most efficient 
ways to visualize a particular experimental effect, especially for multi-factorial designs. They 
are particularly suited for experiments in which the data are modeled with a single canonical 
hemodynamic response function (HRF), because the parameter estimate scales the height of 
the HRF and can therefore be directly interpreted as the average BOLD activation for a 
particular experimental condition. With the proper scaling, these average parameter estimates 
can be expressed as percent signal change (see below) (2) Plots of fitted responses are more 
suitable in situation in which the BOLD response is modeled with a high-dimensional set of 
basis function (e.g. the canonical HRF and its temporal and dispersion derivatives, or with a 
Fourier basis set). These plots can reveal different response shapes between conditions (e.g. 
early vs. late BOLD responses). (3) Event-related BOLD responses display the average height 
of the BOLD responses in a user-defined time windows before and after the stimulus onset. 
This plot shows the actual data and does not rely on any first level model. Event-related 
BOLD responses are estimated by a condition-specific Finite Impulse Response (FIR) model. 
The post-stimulus time in which the BOLD response is expected to rise is parcellated into 
different temporal bins starting at or shortly before the onsets of all trials belonging to a 
particular condition. Different regressors are created for each bin with 1’s at each data point 
belonging to this bin, and 0’s elsewhere (see Figure 2 for an example). No intercept term is 
included and the parameters of the FIR model are estimated using standard ordinary least 
squares. The parameter estimate for each bin of this FIR model is identical to the mean BOLD 
response in that bin, thus creating an event-related BOLD time course. The toolbox takes 
special care to preserve the integrity of the FIR model when the length of the time window is 
too long for closely spaced trials (see Figure 2 for details on the procedure). For the final 
display, rfxplot averages these subject-specific event-related BOLD responses. 
 
 
Voxel Selection 
The selection of voxels from which the data are extracted and plotted is an important decision 
that can affect the visual display dramatically. Possible selection strategies can be loosely 
grouped on a single dimension ranging from a strict selection of significant voxels in an RFX 
analysis to a subject-specific selection voxels that are based on the maximum effect in an 
individual activation pattern.  
 
Whereas the first selection strategy offers the greatest anatomical precision (in the extreme 
case only a single voxel), it runs into the danger of missing stronger activations nearby in 
some subjects. It also disregards that considerable variability in the individual location of 
brain regions remains even after stereotactic normalization. Therefore, the selected voxels 
from an RFX analyses may not fall into the identical anatomical region in all subjects. On the 
other hand, a selection of significant voxels from the individual first level analysis can result 
in a data plot that, while maximizing the individual effect size, is not representative of any 
common anatomical region for all subjects.  
 
rfxplot covers the middle ground between these extremes and offers a flexible two-step voxel 
selection process. First, a search volume based on an RFX contrast is defined with respect to 
the current voxel (single voxel, sphere, or box), or independently by selecting an image mask 
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defining an anatomical region (Figure 1C upper drop-down menu). It is also possible to select 
subject-specific image masks, which delineate a certain region in every subject. In addition, 
the RFX search volume can comprise all voxels or it can be limited to include only the 
significant (supra-threshold) voxels in the current second level contrast. 
 
In a second step, the selection of voxels can be refined by limiting it to the voxel with the 
maximum effect size in each subject given the current second level contrast (Figure 1C lower 
drop-down menu). Thus, it possible to account for different locations of the maximum effect 
across subjects, while limiting the search volume in where to look for these peaks to a specific 
anatomical area. The toolbox determines the maximum effect size by retrieving the data from 
all images of each subject in the search volume and multiplying them with the current second 
level contrast weights, i.e., max effect = max(cTy), for each subject, where c is the current 
second level contrast, and y are the (second level) data for each subject. This approach insures 
that the maximum effect for each subject can be computed for all second level contrasts 
(simple and differential effects). 
 
Optionally, an additional spherical search volume can be defined around the individual peaks 
in order to retrieve the data from a more representative set of voxels than just the peak in each 
subject (Figure 1C lower drop-down menu). In practice, however, this step will often prove to 
be unnecessary, because the data are spatially smoothed during image preprocessing and 
hence the effect sizes in these individual spheres will have a similar magnitude as the peak 
voxel itself.  
 
 
Data Selection 
The selection of regressors from which to extract the data is equally important as the selection 
of voxels. While a certain effect is chosen for an RFX contrast and is then used for voxel 
selection, it might be also informative to display the data from different regressors in order to 
obtain a complete impression of the underlying activation pattern in a particular brain region. 
These comprehensive data plots can protect against the potentially false inference of claiming 
exclusive regional specificity for a single stimulus class. 
 
The toolbox addresses this issue by providing a comprehensive set of images to choose from 
for displaying the underlying data. In fact, the user can choose to plot the data from any 
regressor that has been included in the design matrix or from any contrast that has been 
specified. For instance, given a statistical map based on a functional localizer for the fusiform 
face area (FFA) it is possible to visualize the data in the FFA not only for activations to faces, 
but also to other stimuli (like objects).  
 
The toolbox will always retrieve the data from the underlying first level analyses. This avoids 
some possible “rescaling” issues that arise in second level SPM analyses due to the ubiquitous 
over-parameterized design matrices in which subject-specific and/or group-specific intercept 
terms are included and which model the mean effect of a subject or group. As a consequence, 
the parameter estimates for the other regressors (of the experimental conditions) only reflect 
the difference from this mean effect size. While this procedure results in parameter estimates 
that are more easily interpretable and can increase statistical power, it also has the drawback 
that the original scale of the first level estimates is lost and “activations” cannot be 
discriminated from “deactivations”. rfxplot avoids these problems by always retrieving the 
data from the first level analyses and averaging them directly.  
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Finally, rfxplot selects the images for retrieving the individual data by the image description 
(Figure 1D). This selection procedure protects against different first level design matrices 
across subjects provided that the conditions are named consistently. For example, in a study 
on the subsequent memory effect, the first level regressors are divided by the subject’s post-
experimental memory performance (Staresina and Davachi, 2006). Trials that were later 
remembered are collected in one regressor, whereas trials that were later forgotten are 
encoded in a different regressor. This can results in different first level design matrices 
because due the subject’s performance one of the two regressors may be missing. However, 
the toolbox can deal with this situation if the different conditions (“remembered”, “forgotten”) 
are named consistently across subjects. 
 
 
Splitting regressors into different bins 
In addition to “onset regressors”, which model a canonical BOLD response to a given 
stimulus at a particular point of time in the experiment, SPM also provides a way to include a 
second regressor (called a “parametric modulator”), which can modulate the height of the 
modeled BOLD response on a trial-by-trial basis. The parameter estimates of these 
modulators signify how well the BOLD signal in a certain area correlates with a more 
complex and continuous variable. For instance, by including trial-specific reaction times 
(RTs) as a parametric modulation, one can detect brain areas that covary with RTs, possibly 
indicating brain regions that respond to higher processing demands. In the above mentioned 
subsequent memory study (Staresina and Davachi, 2006), it would be equally possible to 
encode memory success as a parametric modulator rather than using two separate regressors 
for memory success or failure. These modulators can be also used in the context of applying 
computational models of learning to neuroimaging data. For instance, model-derived 
prediction errors can be used as modulators, thus allowing the detection of brain regions that 
encode a prediction error signal (O'Doherty et al., 2004; O'Doherty et al., 2003). 
 
These parametric modulators are orthogonalized with respect to the onset regressor, but are 
subsequently treated as another regressor in the GLM. As a consequence, the parameter 
estimate (beta) of the onset regressor will reflect the height of the average activation to all 
trials in a particular condition, whereas the beta of the modulator will express how well the 
residual fluctuations in the BOLD signal covary with the modulator. Consistent with its 
interpretation as a regression coefficient, a positive beta for the modulator indicates a higher 
BOLD response for trials with a high parametric value and a smaller BOLD response for trials 
with a low parametric value. However, this interpretation is rather abstract and a more direct 
visualization of this relationship usually facilitates comprehension. 
 
rfxplot is designed to provide this kind of data plot. The events of a particular regressor 
(parametric modulators and onset regressors) can be split into different bins according to three 
criteria: (a) according to a percentile range, (b) according to the absolute values of a 
modulator, or (c) according to trial numbers (Figure 1E left drop-down menu). For instance, 
in the first case (percentile range) one could divide the modulator into 3 equally sized bins 
(low, medium, high) according to the 33rd, 66th, 100th percentile (Figure 1E right text input 
fields). In the second case (absolute values), one could split a modulator encoding RTs into 2 
bins, one containing all trials with RTs shorter than 250ms and another one containing all 
trials with RTs longer than 250ms. Finally, both modulators and onset regressors can be 
divided according to trial number (e.g. splitting a regressor into the first and second half of the 
experiment). rfxplot will re-sort all trials in a regressor according to these newly created bins, 
create a new onset regressor for each bin, and estimate a beta signifying the average height of 
the BOLD response for all events in each bin.  
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The advantage using a percentile range for defining the different bins is that it is independent 
of the range of parametric values in each subject. It also ensures that there are approximately 
an equal number of events in each bin. Defining the bins by absolute values is possible when 
the range of the parametric variable is clearly defined or when there is a special interest in 
parametric values above or below a certain threshold (e.g. a RT of 250ms). Finally, splitting a 
regressor according to trial numbers provides an easy way of assessing possible effects of 
time (e.g. that the BOLD response is smaller in the second half of the experiment indicating 
potential habituation effects). The splitting of regressors into different bins is compatible with 
all plot types mentioned in the section “Plot Selection”. 
 
 
Splitting the sample into different groups 
The toolbox is mainly targeted for data inspection of RFX analyses and therefore provides 
different options for assessing the between-subject variability in a group of subjects. A 
possible reason for large variability might be that there are unrecognized groups within the 
sample of subjects that respond differently to the experimental paradigm. When modeled as a 
single group of subjects these effects can increase the unexplained variance and reduce 
statistical power. Therefore, an easy way of inspecting possible effects of sub-groups would 
be beneficial for more detailed future analyses. 
 
The toolbox provides the option of dividing the subjects into different groups (e.g. male – 
female, young – old, learners – non-learners) suitable for a quick inspection of potential 
underlying group differences that might cause a different BOLD response profile. If effects of 
unrecognized subgroups are apparent in a data plot, then this can serve as starting points for 
more detailed analyses of each of these subgroups. Furthermore, the individual data points for 
each subject (and their subject numbers) can be overlaid onto the plot. This can facilitate the 
detection of outlier subjects which can be excluded in a subsequent plot or analysis. 
 
Percent Signal Change 
Over the past few years, Percent Signal Change (PSC) has become a de facto standard for 
reporting the magnitude of activations in functional neuroimaging studies. It is an unfortunate 
and regrettably common practice to assume that the second level parameter estimates (betas) 
are expressed in PSC because the EPI images are rescaled to a session-wise mean of 100 
during SPM image preprocessing. There are two reasons why this is not appropriate. First, the 
beta of a canonical HRF scales the height of the regressor, thus transforming it into a fitted 
response. Therefore, it is actually the height of the fitted response that should be taken as an 
estimate of PSC. Secondly, because the scaling during image preprocessing applies to the 
entire image the scale of the betas can be at best called Percent Global Signal Change because 
the scaling does not take the differences between different tissue types into account. 
 
rfxplot alleviates these two problems and computes PSC by taking the mean signal intensity 
of the tissue type into account which is captured in the voxel-specific and session-wide 
constant term in a first level analysis. rfxplot computes PSC with the following equation: 
 

t

100max

cons

task

β

(HRF)β
=PSC


 

where task  is the parameter estimate of the condition of interest in the voxels of interest, 

max(HRF) is the maximum of a regressor with a single event, and constβ  is the parameter 

estimate of the session-wide constant for the particular voxels of interest. In that sense, the 
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PSC computed by rfxplot can be regarded as a measure of Percent Local Signal Change which 
expresses how much a particular voxel is activated by an experimental conditions compared 
to its own baseline. 
 
 
Fitting a regression model to extracted effect sizes 
A whole family of neuroimaging experiments is devoted to investigating the relationship 
between external stimulus properties and the magnitude of the BOLD response in areas 
thought to be dedicated to processing the stimulus. One of the first examples was the 
relationship between image contrast and activation of V1 (Boynton et al., 1996), which 
demonstrated larger BOLD responses with increasing image contrast. When plotting the 
effect size for different degrees of image contrast with rfxplot, the toolbox also offers to fit a 
regression model to these data. This can be used to test for a linear increase in V1 activation 
when image contrast increases. rfxplot will fit this secondary regression model to both the 
average data across subjects, as well as to the data of each individual subject. While the 
former is displayed in the data plot of the average activation across subject, the latter can be 
used for statistical tests of model parameters (e.g. a one-sample t-test of the individual slope 
parameters in the linear fit). Currently, rfxplot supports four regression models: linear, 
quadratic, exponential, and logarithmic. 
 
 
Features for re-using plot configurations 
Data plots can be configured via a graphical user interface that is integrated into SPM (Figure 
1A). The plot configuration dialogue consists of a series of questions requiring user input. 
Because this dialogue is quite long, rfxplot provides several ways for circumventing it. First, 
if rfxplot finds a plot configuration in the current MATLAB workspace it will offer the 
options of re-using this previous configuration. This option is mostly useful for creating the 
same data plot at different voxels in the brain. Furthermore, each configuration can be saved 
under a specific name and is available for re-usage in a later SPM session. Finally, as detailed 
in the user manual, plot configuration can be scripted, thus allowing a completely non-
interactive usage of rfxplot. 
 
 
RESULTS 
This section provides some examples of the data plots created with rfxplot. The data used for 
these plots are taken from Glascher et al. (2008) and Glascher et al. (2007). 
 
In the first study (Glascher et al., 2008) we investigate the neural correlates of value and 
prediction error signals derived from a reinforcement learning model in a probabilistic 
reversal learning task. A more detailed description of task, methods, and findings can be 
found in the original publication. Both signals were modeled as parametric modulators in the 
subject-specific first level analyses. Parameter estimates for value and prediction error signals 
were subsequently tested at the second level in a one-sample t-test across subjects. Strong 
effects for the prediction error signals were found bilaterally in the ventral striatum. Figure 3 
shows different variants of data plots of the prediction error signal created with rfxplot. 
Voxels were selected by placing an 8mm spherical search volume around the peak coordinate 
in the RFX analysis (x,y,z = 9,9,-15) and subsequently selecting the peak voxel for each 
subject within that search volume. Finally, a smaller 6mm sphere was place around the 
individual peak voxels and data were extracted from this volume and averaged. 
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Figure 3A shows a plot of the effect size in the two experimental conditions (action and 
stimulus reversal) when the parametric modulator (model-derived prediction error) was split 
into 3 equally sized bins according to the 33rd, 66th and 100th percentile. Colors, error bars 
(s.e.m. across subjects), and axis labels were all configured in rfxplot. Figure 3B shows the 
same data (error bars: s.e.m. across subjects), but now the sample is split into 2 arbitrary 
groups of subjects with the individual data point superimposed onto each bar representing the 
average percent signal change for a particular bin (low, medium, high prediction errors). 
Figure 3C shows the same data for the action reversal condition but in the format of fitted 
responses (error bars: s.e.m. across subjects). Finally, Figure 3D displays the same data for 
the action reversal condition for only the bottom and top quartile of possible prediction errors 
(error bars: s.e.m. across subjects). These quartiles were binned by percentile ranges with the 
low bin covering the 0th-25th percentile and the high bin covering the 75th-100th percentile. In 
contrast to the plot in 3C these event-related BOLD response reveal that the (positive) 
response to trials with a high prediction error peaks earlier than the (negative) peak to the 
trials with low prediction error. This information could not have been detected by the plot of 
fitted response because this study only used the canonical HRF as a basis function, which 
models the response rigidly at the same point in time. 
 
The second example utilizes the data from Glascher et al. (2007). This study investigated the 
influences of cognitive load and emotionality of the stimulus on the activation in extra-striate 
visual areas. The experiment was a 3-factorial design with the factors working memory load 
(1-back or 2-back task), emotion (neutral or negative background stimuli), and visibility 
(levels 0%, 33%, 66%, and 100%). The latter factor was realized by scrambling the phase 
information of the background stimuli. Stimuli were presented in blocks of 10 pictures and 
subjects had to perform either a 1-back or a 2-back working memory task on a color square 
presented in the image foreground. The details of the experimental protocol and results can be 
found in the original publication. 
 
Figure 4A shows the fitted responses (error bars: s.e.m. across subjects) as semi-transparent 
“error regions”) for all four visibility conditions in the lateral occipital complex which showed 
a strong main effect of visibility (i.e. increase in activation with higher levels of visibility). 
Figure 4B shows the parameter estimates of the conjunction of the two-way interactions of 
emotion × visibility and load × visibility. The average parameter estimate across subjects is 
represented by a dot with black error bars (s.e.m. across subjects). Linear regression models 
were fitted to these average estimates indicating a significant increase in activation across the 
levels of visibility. The slopes for the two different n-back conditions (1-back in red, 2-back 
in blue) were significantly different, as tested by a paired t-test on the slope parameters from 
the linear regression for each subject. 
 
 
COMPARISON WITH EXISTING SPM TOOLBOXES 
The voxel selection process of rfxplot combines approaches from whole-brain, voxel-wise 
statistical tests with those typically found for Region of Interest (ROI) analyses. The latter are 
implemented in the MarsBar Toolbox (Brett et al., 2001). In contrast to whole-brain voxel-
wise statistical analyses, the time series of all voxels with an ROI are collapsed into a single 
time series, which is then analyzed using standard GLMs. ROI analyses therefore allow for 
voxel selection based on the individual activation profile, thus tailoring it to the maximum 
effect size. As explained in detail above, the voxel selection procedure of the toolbox can be 
seen as the middle ground between these two approaches. Unlike the implementation of ROI 
analyses in MarsBar, however, rfxplot is a tool for data visualization and will not run any 
statistical analyses on the data it extracts and displays. 
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The estimation of event-related BOLD responses via an FIR model is akin to existing 
approaches implemented in SPM itself and in an additional tool developed by Darren 
Gitelman (get_psth.m, downloadable at http://brainimaging.tiddlyspot.com/). However, unlike 
these previous implementations rfxplot offers a larger flexibility in selecting regressors and 
splitting a regressor into different bins, thus allowing for different event-related BOLD 
responses within a single regressor. 
 
 
CONCLUSION 
rfxplot provides a variety of options for creating data plots of neuroimaging data (effect size, 
fitted response, and event-related BOLD responses) from within RFX analyses in SPM. This 
approach is congruent with the scientific interest of the neuroimaging community in group 
level analyses, which allow for population inference. Nevertheless, the toolbox also offers 
various features for examining individual subjects (e.g. by overlaying subject-specific data 
points) and, to a certain extent, the microstructure of trials (e.g. by splitting a regressor into a 
number of different bins). These visualization techniques can therefore help to detect inter-
individual differences in functional neuroimaging studies, an area that is becoming 
increasingly important in the field. Many experimenters nowadays realize that the large extent 
of between-subject variability is not only a risk to statistical power that needs to be overcome 
by increasing sample sizes, but rather that interesting and meaningful information is contained 
in this inter-subject variability that can be explained by additional external variables. In that 
sense, many researchers are seeking out additional per-subject variables that can explain parts 
of this variance and thus increase statistical power and characterize the data in greater detail. 
A recent trend in several publications is to correlate the size of activation in a particular brain 
area with external variables such as measures derived from personality questionnaires 
(Kumari et al., 2004) or even with polymorphic variants in a subject’s genetic profile 
(Yacubian et al., 2007), as it is frequently done in the emerging field of imaging genomics 
(Meyer-Lindenberg and Weinberger, 2006). To further support this goal of examining 
between-subject variability, it is intended that a future version of the toolbox will be able to 
create correlation plots of BOLD activation data with any arbitrary external variable and to fit 
different regression models to these data (e.g. linear, curvilinear, robust regression). These 
enhancements, together with the already existing highly configurable visualization features 
and the user-friendly interface, make rfxplot ideal for data exploration and creating high-
quality figures for publications. 
 
 
INFORMATION SHARING STATEMENT 
The software described in this paper is hosted as a SourceForge project and can be 
downloaded at http://rfxplot.sourceforge.net. 
 
ACKNOWLEDGEMENTS 
The author thanks Daniel Kennedy for helpful comments on the earlier version of the 
manuscript. J.G. is supported by the Deutsche Akademie der Naturforscher Leopoldina Grant 
No. 9901/8-140. The author declares no financial conflict of interest. 
 
 
 

 9

http://brainimaging.tiddlyspot.com/
http://rfxplot.sourceforge.net/


REFERENCES 
 

Boynton, G.M., Engel, S.A., Glover, G.H., and Heeger, D.J. (1996). Linear systems analysis 
of functional magnetic resonance imaging in human V1. J Neurosci 16, 4207-4221. 

Brett, M., Anton, J.-L., and Valabreque, R. (2001). Region of interest analysis using an SPM 
toolbox. Neuroimage 16. 

Glascher, J., Hampton, A.N., and O'Doherty, J.P. (2008). Determining a Role for 
Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-
Related Decision Making. Cereb Cortex. 

Glascher, J., Rose, M., and Buchel, C. (2007). Independent effects of emotion and working 
memory load on visual activation in the lateral occipital complex. J Neurosci 27, 4366-4373. 

Kiebel, S.J., and Holmes, A.J. (2007). The general linear model. In Human Brain Function, 
R.S. Frackowiak, K.J. Friston, C.D. Frith, R.J. Dolan, C.J. Price, S. Zeki, J. Ashburner, and 
W.D. Penny, eds. (San Diego: Elsevier Academic Press), pp. 101-126. 

Kumari, V., ffytche, D.H., Williams, S.C., and Gray, J.A. (2004). Personality predicts brain 
responses to cognitive demands. J Neurosci 24, 10636-10641. 

Meyer-Lindenberg, A., and Weinberger, D.R. (2006). Intermediate phenotypes and genetic 
mechanisms of psychiatric disorders. Nat Rev Neurosci 7, 818-827. 

O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., and Dolan, R.J. (2004). 
Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 
452-454. 

O'Doherty, J.P., Dayan, P., Friston, K., Critchley, H., and Dolan, R.J. (2003). Temporal 
difference models and reward-related learning in the human brain. Neuron 38, 329-337. 

Penny, W.D., and Holmes, A.J. (2007). Random-Effects Analysis. In Human Brain Function, 
R.S. Frackowiak, K.J. Friston, C.D. Frith, R.J. Dolan, C.J. Price, S. Zeki, J. Ashburner, and 
W.D. Penny, eds. (San Diego: Elsevier Academic Press), pp. 156-165. 

Poline, J.B., Kherif, F., and Penny, W.D. (2007). Contrasts and Classical Inference. In Human 
Brain Function, R.S. Frackowiak, K.J. Friston, C.D. Frith, R.J. Dolan, C.J. Price, S. Zeki, J. 
Ashburner, and W.D. Penny, eds. (San Diego: Elsevier Academic Press), pp. 126-140. 

Staresina, B.P., and Davachi, L. (2006). Differential encoding mechanisms for subsequent 
associative recognition and free recall. J Neurosci 26, 9162-9172. 

Yacubian, J., Sommer, T., Schroeder, K., Glascher, J., Kalisch, R., Leuenberger, B., Braus, 
D.F., and Buchel, C. (2007). Gene-gene interaction associated with neural reward sensitivity. 
Proc Natl Acad Sci U S A 104, 8125-8130. 
 
 

 10



Figure 1 

 
 
Figure 1. Examples of the graphical user interface of rfxplot. (A) rfxplot uses existing SPM 
windows for entering plot configurations (input area) and for displaying the data (display 
area). (B) Several different plot types (effect sizes, fitted responses, event-related BOLD 
responses) can be selected via a drop-down menu. (C) Voxel selection proceeds in two steps. 
First, an RFX search volume is defined via a drop-down menu. Later, the selection of voxels 
from individual first level analyses can be refined. (D) Images are selected by references to a 
table of image descriptions. Provided these descriptions are consistent across subjects, rfxplot 
can deal with missing images in some of the subjects. (E) Regressors can be split into 
different bins, thus allowing for a visualization of only certain trials of a single regressor. 
These bins are configured by a series of text inputs. 
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Figure 2 

 
 
Figure 2. Example for estimating event-related BOLD responses with a Finite Impulse 
Response (FIR) model. (A) Original FIR design for three different event types with three 
trials each. The FIR for each event contains as many regressors as specified time bins (16 in 
this example). The stimulus onset is marked by the green bin. Due to the relatively long time 
window and the rapid presentation time, some of the bins are overlapping between and within 
event types (marked in red). Estimating this FIR design would yield parameter estimate for 
these bins that are not identical to the mean BOLD signal in each bin. (B) rfxplot resolves this 
ambiguity by removing these entries from the FIR design. Assuming that the most important 
part of the BOLD response is its peak approximately 4-5 sec after stimulus onset, rfxplot 
starts removing entries from the beginning of the time window until 2 seconds after stimulus 
onset (marked in cyan). If this does not completely resolve the overlap, then overlapping 
entries are removed from the end of the time window (marked in blue). (C) The resulting FIR 
design after the removal of overlapping bins. This procedure implemented in rfxplot tries to 
preserves the bin structure with an emphasis on those bins when the maximum BOLD 
response is expected (~4-5 sec after stimulus onset). However, it also insures that the 
parameter estimates for the FIR design will always be identical to the average BOLD signal in 
each bin. 
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Figure 3 

 
 

Figure 3. Examples of data plots created with rfxplot (data from Glascher et al., 2008). All 
error bars are s.e.m. across subjects. (A) Mean percent signal change for a parametric 
modulator encoding a model-derived prediction error signal in the ventral striatum, which has 
been split into three equally sized bins. (B) Same as in (A) but with subjects split into two 
arbitrary groups. Individual data points are superimposed on the bar graphs. (C) Fitted 
responses for the three different bins of parametric modulator in the action reversal condition. 
(D) Event-related BOLD responses for the trials with low vs. high prediction errors. Low = 
bottom quartile, high = top quartile of possible range of prediction errors. 
 
 
 

Figure 4 

 
 
Figure 4. Example of data plots created with rfxplot (data from Glascher et al., 2007). All 
error bars are s.e.m. across subjects. (A) Fitted responses for the different experimental levels 
of the main effect of visibility. (B) Parameter estimates for the conjunction of the two-way 
interaction of emotion × visibility and load × visibility. The regression lines were fitted with 
rfxplot to the average data for both levels of working memory load (1-back, 2-back) across 
the different levels of visibility. 
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